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Abstract

We study reheating in theories where inflation is completed by a first-order phase

transition. In these scenarios, the Universe decays from its false vacuum state by bubble

nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy

for the bubble walls. To help understand this phase we derive a simple expression for the

equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls

collide. We present numerical simulations of two-bubble collisions clarifying and extending

previous work by Hawking, Moss, and Stewart. Our results indicate that wall energy is

efficiently converted into coherent scalar waves. We go on to discuss particle production

due to quantum effects. These effects lead to the decay of the coherent scalar waves. In

addition, they lead to direct particle production during bubble-wall collisions. We calculate

particle production for colliding walls in both sine-Gordon and ¢4 theories and show that

it is fax more efficient in the ¢4 case. The relevance of our work for recently proposed

models of first-order inflation is discussed.
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1. Introduction

In Guth's original version of inflation [1], the Universe decays from its initial false-

vacuum state by the nucleation of true-vacuum bubbles. As the bubbles expand, the

energy in the false vacuum is converted into kinetic energy for the bubble walls. In theory,

the walls eventually collide, the true vacuum percolates, and wall energy is converted into

radiation, reheating the Universe. Unfortunately, in Guth's model the nucleation and

expansion of bubbles cannot keep up with the exponential expansion of the regions still

trapped in the false vacuum, and the true vacuum never percolates [2]. This is known in

the literature as the 'graceful exit' problem.

Clearly, first-order inflation (generically, any model in which inflation is completed

by a strongly first-order phase transition) can work if either the nucleation or expansion

rate changes during the inflationary phase. For example, in the extended inflation scenario

proposed by La and Steinhardt [3] the Hubble parameter in the vacuum-energy dominated

(p -- -p) Universe decreases with time, thus enabling the true vacuum to percolate. While

La and Steinhardt's proposal suffered a graceful exit problem of its own [4], there has been

no shortage of theories which purport to save the general idea of first-order inflation [5].

Given the renewed interest in first-order inflation, we felt it an opportune time to

examine some of the nuts and bolts of reheating in these models. Reheating in new [6] and

chaotic [7] inflation has been examined in some detail [8]. The analysis in these scenarios

is simplified by the fact that the Universe can be treated as homogeneous (Friedmann-

Robertson-Walker) throughout. Inflation occurs when some order parameter or scalar

field finds itself displaced from the minimum of its potential. At first, the field slowly

rolls towards this minimum. During this phase the energy density p of the Universe is

dominated by vacuum energy with p - const _ -- P,_c; the pressure p = -p; and the scale

factor a o_ e tI't, where H 2 = 81rp, ac/3ra_l. (We use units where h = c = kB = 1 and
_-1/2

rnpl = "-'Newton -_ 1019GeV is the Planck mass). As the inflaton reaches the minimum,

the slope of the potential increases and the field begins to oscillate about the minimum

on a time scale short compared to the Hubble time. These oscillations behave at first like

pressureless nonrelativistic matter so that a _ t 2/a. Eventually, the oscillations decay into

relativistic particles and the Universe becomes radiation-dominated. We note that if the

lifetime of the inflaton is long compared to H/1 , most of the energy in the _b field will be

diluted by cosmological expansion and the reheat temperature TRli ( "-_ (rnp_F,) 1/2) will
1/4

be well below p,,ac, the energy scale associated with the false vacuum.

The physics of reheating in first-order inflation is essentially the same as in new and

chaotic inflation: Energy initially stored in a coherent scalar field must be converted into

radiation. However, the situation is considerably more difficult to analyze. Here, both

the field _b and the metric are inhomogeneous. Furthermore, reheating involves a mix of

quantum physics (bubble nucleation and particle creation) and classical physics (expansion

and collisions of bubbles). Difficulties aside, a number of authors have focused on the

potentially rich phenomenology associated with these scenarios. For example, it has been

suggested that gravitational waves [9], black holes [10][11], topological defects [12], and the

baryon asymmetry [13][11] may have been produced during the phase transition. Whether

or not such phenomena actually occur depends in part on the details of reheating. For



though any asymmetric double-well potential will do. We shall generically refer to models

of this type as ¢4 models. Focus for the moment on the case where e <<: )` so that the energy

difference between true and false minima is small compared to the height of the barrier. To

lowest order in e, the true and false minima are at--Co and ¢o respectively. The mass of

C-excitations in either of these minima is given by m s = )`112¢o, and p_,ac = 2e¢4o • e << )`

corresponds to the thin-wall limit in which the radius of the bubbles is much greater than

the thickness of the wall separating the interior true vacuum region from the exterior false

vacuum region. One nice feature of the thin-wall limit is that the properties of individual

bubbles can be determined analytically. In particular, the thickness of the bubble wall is

A = 2/()`1/2¢o) = 2m_ 1, the surface energy density is a = 2)`1/2¢3o/3, and the radius of

the bubble at the time of nucleation is Ro = ),1/2/(e¢o) = 3a/pv,_c. Ro/A _- )`/e >> 1 so

the bubble walls are indeed thin.

The results quoted above are valid so long as gravity is not important. Gravity be-

comes important when the radius of the bubbles becomes comparable to the Hubble radius

[ ]-'"[16]. For the case at hand, the Hubble radius is given by H -1 = S_rp,,ac/3m_, _-

rapt� (el/2¢2o). RH _- ()`/e) 1/2 qbo/rnp, is therefore a measure of how important gravity is.

The nucleation rate per unit volume (number of bubbles nucleated per unit four-

volume) is [17]

r _- A (me) 4 e -s_ (2.3)

where A is a constant of order unity and SE is the Euclidean action for the bounce solution

corresponding to a critical bubble. For the thin wall case, Ss = 7r2)`2/3e3. Perhaps the

most important parameter describing a first-order inflation theory is z} -- F/H 4, the so-

called percolation parameter. 77gives roughly the number of bubbles nucleated per horizon

volume per Hubble time. For the case at hand

The requirement that inflation last long enough to solve the horizon and flatness problems

constrains _/to be less than about 10 -3, whereas percolation of the true vacuum bubbles

can only occur if _/> O(0.1). In Guth's model, _/is constant and the model is untenable.

In the models of Ref.[5] , _7varies in time; a period of inflation with _/< 10 -3 precedes the

percolation phase in which 77is large.

The mean separation between bubbles is roughly D -_ F -1/4 = 7I-1/4H-1

(Al/2¢o) -1 esEI4. Certainly, a key unknown is the value (or range of values) 7/has when

percolation occurs. (Remember that 77 is increasing with time.) For r/>> 1, D will be less

than the Hubble radius and there will be many bubbles within a given Hubble volume. In

this case, cosmological expansion can be neglected in treating the dynamics of the bubbles.

On the other hand, if _/_-, 1 when percolation occurs, D will be of order the horizon and

cosmological expansion will play an essential role in the bubble dynamics. In what follows

we will neglect, for the most part, cosmological expansion in treating the bubbles, but only

because it simplifies the calculations. We leave the full problem of bubble dynamics in an

expanding spacetime for future investigations.
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Let T W be the stress energy for the wall.

function singularity across the wail. It is convenient to define the quantity

In the thin wall approximation T W has a (%

Sab -_ / dl T_ W (3.3)

where I is the proper distance through the surface in the direction of _.

dl = 7dr.

The three metric intrinsic to the wall is

We note that

h_b = gab- _b • (3.4)

For domain walls, S_b = -ah_b. In addition bubbles nucleated by quantum tunneling have
3a/Ro = P,ac. It is straightfoward to show that

3"yaR 2_-1 d3xTo W = D 3

= P,J,2c'-_

R 3

(3.5)

Combining Eq.(3.2) and Eq.(3.5) we find

(1, (3.6)

For R<< D, p __ -Pwc as expected; the Universe in this case is essentially dominated by

vacuum energy. If, on the other hand, bubbles are nucleated with Ro '_ D, then _ = -2fi/3

right after nucleation. This is just the equation of state for a wail-dominated Universe.

In fact, the Universe is still undergoing power-law inflation when the bubbles first collide

[20]. Finally, if Ro << D, the walls will be relativistic by the time they collide, and the

equation of state just before bubble collisions will be/_ = _/3.

4. Bubble Collisions: Classical Treatment

Bubble collisions provide the next step in reheating. Collisions release energy bound in

the walls through both quantum and classical processes. Quantum effects will be discussed

in Section 5. Here, we treat the bubble walls as classical field configurations and show that

classical scalar waves are emitted during a collision. We explore this process by studying
the collision of two expanding bubbles.



For Irl < Itl (Region II), we require a different coordinate system (p', r_b',0, yg) with

X = p' sinh ¢' sin Ocos _O

y = p' sinh ¢' sin Osin qo

z = p' sinh _' cos 8
(4.2)

t = p' cosh ¢' .

In order to find the field configuration in this region one needs to take the field configuration

on the p = 0 hypersurface (from the Region I solution) and evolve into Region II. Since

the field configuration only depends on p this amounts to solving an ordinary differential

equation. For a single thin-wall bubble, the bubble wall is entirely in Region I. The field

is essentially constant in Region II, so that evolving the field is usually unnecessary.

The situation changes with more than one bubble. Consider the nucleation of two

bubbles. In generalthis is a complicated process and one that has yet to be treated in

the literature. If, however, the bubbles are widely separated at the time of nucleation,

then they can be treated as noninteracting (the dilute instanton approximation), and the

generalization from the single bounce solution is straightfoward. For two bubbles, the axis

joining their centers will be a preferred direction, so that the solution to the Euclidean

equations of motion for noninteracting bubbles will have 0(3) symmetry. We consider

first a coordinate system in which the r = 0 hypersurface intersects the centers of the

two bubbles. The field configuration on this hypersurface becomes initial data for two

simultaneously nucleated expanding bubbles in Minkowski space, and one could solve for

the field configurations numerically by solving the classical equations of motion. As in the

single bubble case, a more efficient technique for finding the evolution exploits the extra

boost symmetry of the problem. Here the 0(3) symmetry of the two-bubble Euclidean

bounce translates to an 0(2, 1) symmetry in Minkowski space. Let the z-axis correspond

to the the line connecting the centers of the bubbles. As before, spacetime is divided into

two regions. For Itl < v/z + y2 we choose the coordinates (s, ¢, 8, z) with

z = s cosh ¢ sin O

y -- S cosh _bcos 0

Z'--Z

t = s sinh _b. (4.3)

The solution in this region of spacetime is given by the analytic continuation of the two

bubble bounce solution. For Itl > _/x 2 + y2 we take

z = s _sinh ¢' sin 0

y = s _sinh Ib_ cos 0

Z--'Z

(4.4)
t = s' cosh _b' .

To find the field configuration in this region, we take the solution on the t = r = v/x 2 + y2

hypersurface and solve the equations of motion. Here the equations we are required to

solve are 1 + 1 (s and z) partial differential equations. For the two bubble case, all of the

interaction between the bubbles takes place in this second region.

The procedure outlined above was developed and used by HMS. Here we consider

bubbles in a theory described by Eqs.(2.1,2.2) with e = 0.1. In Fig. la, we show the field

¢(s, z) in the collision region for two simultaneously nucleated bubbles. In Fig. lb, the
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an observer at z -- 0 but arbitrary r, v(r) = V_/-br 2 - _+r 2. For r (((t,,tf),

_'(r) - v0 (1 - r2/2t,tl) whereas for r _ (ti, tf ) , _'(r) = To (ti + tl) /2r. In either case, the

time interval decreases with increasing r, a result which can be read off of Fig. 2.

We have carried out a variety of numerical studies and found that generally the radia-

tion of scalar waves is reasonably efficient. For example, in the simulations described above

we find that most of the energy in the center of the two-bubble system is radiated away

after only a few collisions. This result holds for a wide range of initial separations. We

have also simulated the collision of two infinite plane walls in a theory with a symmetric

double well potential (Eq.(2.2) with _ = 0) and find that the percentage of energy radiated

during a single collision is roughly constant and ,-- 30-40% for a wide range (0.3 < "/< 10)

of initial velocities (see, for example, Ref.[21]).

One can also consider first-order inflation in sine-Gordon (SG)-type theories. Here

the potential is of the form

where there are N local minima at ¢ = 2n¢o and VA creates a small asymmetry among

these minima. For the most part, the dynamics of wall-wall interactions is determined

by the first term in V. As is well known, SG kinks in a theory with VA -- 0 are true

solitons, and infinite plane-symmetric walls pass through one another without dissipating

any energy. However, if the walls are curved (or if VA _ 0) they will produce scalar

radiation [22], though not as efficiently as ¢4 walls. Reheating, in fact may be very different

in these models (see also Section 5), though no detailed work has yet been done.

5. Particle Production

In order to reheat the Universe, the inflaton must couple to ordinary particles. This

will allow the classical scalar waves described above to decay, eventually filling the Universe

with a thermal bath at a temperature TRH. These couplings also lead to direct production

of particles during collisions between walls.

In this section we discuss this direct particle production. In particular, we con-

sider production of fermions arising from interactions of the form £:1 - g1¢¢¢ and

£:2 "- g_f-l(P%,¢O_'¢, where f has units of mass. £:1 is the typical Yukawa coupling of a

scalar field to fermions. £2-type couplings arise if ¢ is a Goldstone (or pseudo-Goldstone)

bosom In this case, the potential for ¢ is of the sine-Gordon (SG) type. As we will see,

particle production in these two theories is dramatically different, though this is due as

much to the peculiar properties of the SG walls as to the different form of the coupling
between ¢ and 0.

Our philosophy is to treat ¢ (the bubbles or walls) as a classical, external field and the

fermions as quantum fields in the presence of this source (see, for example, Ref. [23]). In

so doing we make no attempt to treat backreaction of particle production on the evolution
of the walls.



As a first example,consideran infinite plane-symmetric domain wall. To keepthings
simple we assumea model with degeneratevacuaso that a noninteracting wall will move
with constant velocity. Sincethe result must beLorentz-invariant, we canwork in the rest
frame of the wall. Clearly, in this frameP0 = 0 for all modes, so that p2 < 0 and there is

no particle production.

Next, consider the head-on collision of two plane-symmetric walls. The walls can come

from either ¢4 or SG theories. As we will see, the crucial difference between the two models

is that _b4 walls scatter off one another while SG walls pass through one another.

In principle, the calculation should be straightforward. One starts with the field

configuration describing a collision. In the case of plane-symmetric walls moving in the

z-direction, ¢(aT, t) = ¢(z, t). The next step is to calculate the Fourier transform. Here

¢(k,w) = (2_r)2_(k,)6(kv)¢(kz,w). The final step is to substitute into Eq.(5.7) and inte-

grate over p. This will give the number of particles produced per unit area:

N /dkdw (_,(2)_- = 2 (2_r)2 i¢(k'°")12 Im (w 2 -k2)) (5.8)

where k - kz.

The field configuration for colliding ¢4-walls can be found numerically. However, the

result will be quite complicated, as the scattering of two ¢4 walls is inelastic. In general,

scalar waves are produced in the collision whose decay will contribute to the particle

production. It is difficult to untangle this contribution from that of the actual collision.

We therefore choose to model the collision by treating the walls as infinitesimally thin and

assuming that the scattering is perfectly elastic. This model should give accurate results

for k << 7m 4, and w << _/m_/v in the case of relativistic walls.

Our ansatz for the field configuration is

¢o, for vt < z < -vt and t < 0;¢ = ¢0, for -vt < z < vt and t > 0; (5.9)
-¢o, otherwise

and the Fourier transform of the field is

8v¢0
= .+2_ k2v2• (5.10)

The slow power law-fall off at large w 2 - k2v 2 is due to the fact that in our ansatz, ¢

is discontinuous. For realistic "thick" domain walls, ¢ would cut off exponentially for

k _ 7m 4, and w >_ 7m4,/v. Substituting Eqs.(5.5,5.10) into Eq.(5.7) we estimate

N 2 /Tm+_
_- -- g_¢oln\ 2# ] (5.11)

where we have assumed that 7m+ >> 2# and 7 >> 1. The energy per unit area radiated by
the walls is

E
2.2

A _- gl_oTm_ (5.12)
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The final result can bewritten in the form

k) =
4_'¢o sinh (_

__SZ *___A (5.20)

This result is similar in many

_ (w 2 _ v2k2 )-1 In addition

anticipated above. We estimate

respects to Eq.(5.10). For w < 7vrnc and k < 7me,

is exponentially damped for larger values of k and w, as

that the number of particles produced per unit area is

N (rn¢,_ 2 (5.21)

and the energy lost per unit area is

] _- gz¢oTmgp (5.22)

where again we have assumed that 7m_ >> 2#. This represents a fraction (g2m_,/Tf) 2

of the total energy in the walls and is less than that found in the ¢4 case by a factor

(m_/f)27 -2. The (rn4,/f) _ term comes from the nature of the coupling £:2 and is usually

quite small.

Particle production in this case is due to a slight slowing down of the walls during

their interaction. As 7 becomes large, the forces between the walls are able to effect a

smaller change in velocity, leading to a smaller result for N/A. In principle, there will be

similar effects in the ¢4 case leading to corrections of order 1/7 '_ to Eqs. (5.11) and (5.12).

Evidently, we can produce particles up to energy 7m. If the bubble walls are highly

relativistic when they collide, there will be the possibility of producing particles well above
the mass of the inflaton.

6. Conclusions

It is relatively easy to find a cosmological scenario which inflates. The challenge is

in bringing an end to inflation so that the resultant universe resembles the one we live

in. The vacuum energy which drives inflation must be converted into relativistic particles.

Furthermore, fluctuations which arise during inflation should not lead to unacceptably

large distortions in the microwave background. It is a bonus if they provide the seed

perturbations necessary to drive the formation of large-scale structure. In addition, relics

of the inflationary epoch such as gravity waves and topological defects may have survived

until the present epoch. If detected these phenomena would provide a window to the very

early Unverse.

The search for a truly graceful exit from inflation has had limited success. As is

well known, most new and chaotic inflation scenarios require 'fine tuning' to satisfy the
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black, the true vacuum in light gray. Regions where ¢ < -¢o appear white. In Fig.

lb the initial separation beteen the bubbles has been doubled and the coordinates

have been scaled by a factor 1/2.

2. Spacetime diagram in the t - r plane for the two-bubble collision shown in Fig. la.

For this diagram, z = 0.

3. Field configuration shown at different times during the collision. Note the scalar

radiation emanating from the collision region.

4. Spacetime diagrams illustrating a big bubble hitting a small bubble. Fig. 4a shows

the two-bubble collision in the equal bubble (simultaneous-nucleation) frame. Here,

the radiation is symmetric about z = 0. Fig. 4b shows the same configuration in a

Lorentz-boosted frame. The bubble on the left is nucleated first and is larger at the

time of the collision. In this frame, all of the radiation is moving to the right, away

from the nucleation site of the big bubble.
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